Author(s): (Español) Mario Echeverría-Su, Esteffany Huamanraime-Maquin, Félix Israel Cabrera, Ian Vázquez-Rowe
(Español) Micro-mobility has increased in urban environments to reduce dependence on private vehicles. While electric micro- mobility alternatives are supposed to reduce environmental impacts, certain studies suggest that this can depend on the transport mode they substitute. In parallel, despite growing efforts, urban areas in developing and emerging economies struggle to implement sustainable mobility programs at a city-wide level. In March 2019 the first dockless e-scooter rental service appeared in the city of Lima, Peru. Although the social and environmental impacts of dockless e-scooters have been the center of multiple studies, these are mostly based in North America and Europe. Therefore, the main objective of the current study was to use Life Cycle Assessment (LCA) to address the environmental profile of e-scooter use in districts of central Lima. All stages of the life-cycle of e-scooters were modelled considering local conditions, from manufacture to end-of-life. A sensitivity analysis was conducted to account for the variability in environmental impact based on five parameters: lifespan, battery range, remaining battery charge, collection dis- tance and collection vehicle. Results show that over two thirds of impacts are linked to manufacturing thanks to the low-carbon profile of electricity production in Peru, which lowers the burdens in the use phase, making e-scooter use competitive in the local market as compared to electric bikes or motorcycles. However, replacement trends show that net environmental gains are not always obtained. Poor maintenance and derived lifespan or battery range are important sources of variability for the impact categories assessed. Although e-scooters show potential for their im- plementation in developing cities with similar characteristics to Lima, we recommend that site-specific studies should be conducted to foster adaptive management strategies which take into account the means of transport being substituted by e-scooters.
Open linkAuthor(s): Diana Ita Nagy, Ian Vázquez Rowe, Ramzy Kahhat Abedrabbo
(Español) Marine plastic accumulation has gained international attention in recent years. Sources, pathways, and environmental impacts are being currently studied to understand the complex interactions during waste, especially plastic, transportation to the sea. Rivers have been identified as debris corridors allowing transportation of mismanaged waste. However, there is also evidence of waste accumulation in river basins, suggesting they can also act as sinks. Thus, assuming a uniform and continuous transportation of waste through rivers towards the ocean may signify an oversimplification. This study proposes a methodology to estimate plastic release to the ocean, considering a more detailed characterization of each river basin, including natural attributes and manmade constructions that may act as barriers or boosters for this release. The methodology is exemplified using a case study for the Region of Piura, Peru, and estimating a range of 4.2 to 13.9 kg/person/year of plastic waste reaching the Pacific coast during 2018. These results, when compared with the existing literature, demonstrate more conservative estimations. This methodology is presented as a useful tool that can be easily applied to develop more accurate mismanaged waste dissipation along different compartments.
Download publication (2.13 MB)Author(s): (Español) Ian Vázquez-Rowe, Robert Parker, Helen Hamilton, Huan Liu
(Español) Human interaction with ocean resources has historically been challenging due to the difficulties that arise when a terrestrial species aims at becoming successful in a marine environment. Shipwrecks, for instance, have doomed coastal communities for centuries, and even today fishing is one of the deadliest sectors in the labor force. Similarly, human-induced marine environmental catastrophes, such as oil spills for instance (Trevors & Saier, 2010), have commonly been laborious to clean up due to the inherent difficulty of humans performing beyond terrestrial ecosystems. Continued human population and economic growth since the beginning of the Industrial Revolution have exacerbated the need of human societies for mineral ores, fossil fuels, and other sources of energy, water, and food. This has led to the occupation of vast areas of terrestrial land, to the extent that humans now have a noticeable footprint in all the world's terrestrial biomes. In the world's oceans this same pattern has occurred at a slower pace throughout the decades, with fishing activities becoming more efficient with the arrival of steam vessels in the 1880s, diesel in the 20th century (Engelhard, 2008), and the incorporation of sophisticated detection systems turning ancestral coastal fishing activities into highly industrialized systems that land millions of metric tons of fish and other marine species annually (Fornshell & Tesei, 2013). Similarly, oil rigs spread quickly in the world's ocean to provide additional fossil fuel supplies for thirsty growing economies (Nyman, 2015), marine fright soared with the process of globalization (Mersin et al., 2019) with thousands of cargo vessels swarming the seas and, more recently, seabed mining has appeared in the public and private agenda as an alternative and lucrative sector to maintain the supply of metal ores in the technosphere (Levin et al., 2020). This increased pressure of human activities on the ocean and its resources has translated into a series of environmental impacts that have affected marine conservation (Knowlton, 2021) and degraded vast areas of the ocean. However, it must be noted that not all environmental impacts affecting the ocean are located in the ocean itself, but rather are created by terrestrial activities. In this sense, nutrient loading linked to wastewater treatment plants, agriculture, and cattle ranching are responsible for vast dead zones generated in multiple coastal zones across the globe (Diaz & Rosenberg, 2008), and it is also mainly terrestrial activities that are responsible for the accumulation of plastic waste in the world's oceans (Beaumont et al., 2019). Interestingly, many of these environmental impacts have only been analyzed in detail in recent years. For instance, marine plastic accumulation due to anthropogenic activities and its impacts on ecosystems and human health have only become a relevant field of research in the past decade after the Call for Action “Our Ocean, Our Future” of the Ocean Conference, organized by the United Nations in New York on June 5−9, 2017 (Sonnemann & Valdivia, 2017). In this context, although the focus of oceans-based research has traditionally been narrowly focused, researchers are recognizing the value of a wider, systems-based perspective with the aim of linking industrial uses with the environmental and resource impacts they engender. We argue that the field of industrial ecology is well-suited to fill that gap, as it is interdisciplinary in nature, rapidly growing, and has systems analysis at its core. The current special issue of the Journal of Industrial Ecology, entitled “Industrial Ecology for the Oceans,” explores all of the above-mentioned issues with the ultimate objective of catalyzing and compiling novel research regarding the use of industrial ecology in the world's oceans. A total of 24 articles were accepted for publication in the current special issue. These can be divided into five main topics: (i) fishing and aquaculture; (ii) shipping; (iii) ocean acidification; (iv) marine plastics; (v) nutrient flows; and (vi) seabed mining, and are described below.
Download publication (154.98 KB)Author(s): Ian Vázquez Rowe, Ramzy Kahhat Abedrabbo, Eizo Muñoz Sovero
(Español) The 13th International Conference on LCA of Food, which was held on October 11-14 2022, took place for the first time in Lima, Peru, and the theme of the conference topics was: The Role of Emerging Economies in Global Food Security.
Open linkAuthor(s): (Español) Alejandro Parodi, Sara Valencia-Salazar, Ana María Loboguerrero, Deissy Martínez-Barón, Enrique Murgeitio, Ian Vázquez-Rowe
(Español) Circular food systems are increasingly acknowledged for their potential to contribute to the transition towards sustainable futures. In a circular food system, the use of finite and limited resources is minimized, and nutrients in residual streams and inedible biomass for humans are reused as inputs in the bioeconomy. Livestock has become relevant in this narrative for upcycling nutrients contained in food by-products and grass resources into nutritious food for humans without using human-edible resources. Evaluating on-going national sustainabil- ity initiatives in the livestock sector is key to determine if circularity elements are already rep- resented and to identify new opportunities and pathways for the future. In this paper we synthetize the environmental actions promoted by different initiatives driving the sustainable transformation of Colombian cattle production systems and assess the inclusion of circular- ity elements in these actions. The proposed environmental actions were concentrated in the conservation of remaining natural ecosystems, zero-deforestation and the sustainable intensification of cattle production through silvopastoral and paddock rotational systems. Circularity was addressed by some initiatives via the use organic fertilizers and the use of manure as fertilizers or feedstock for bioenergy generation. However, given that cattle farm- ing is often practiced in low-input systems where the collection of by-products for reutiliza- tion (e.g., manure) is not always feasible, these actions are expected to have limited impact in the sector. Silvopastoral systems can positively promote circularity by creating the condi- tions for internal nutrient recycling via litterfall, biological nitrogen fixation, phosphorus solu- bilization, and presence of beneficial insects. However, to avoid food-feed competition and to remain circular, these should only be installed in agricultural areas unsuitable for crop pro- duction. In areas where crops can grow, other production systems that prioritize the produc- tion of plant biomass for human consumption (i.e., agrosilvopastoral systems, mixed crop- livestock systems or forms of crop intercropping) should be considered.
Download publication (1,003.62 KB)Author(s): (Español) Joan Sanchez-Matos, Leticia Regueiro, Sara González-García, Ian Vázquez-Rowe
(Español) Aquaculture is an increasingly important supplier of food worldwide. However, due to its high dependence on agricultural and fishing resources, its growth is constantly constrained by environmental impacts beyond aquaculture production systems. Within the European Union, Spain accounts for approximately 25 % of total aquaculture production, which implies that environmental impacts in rivers and marine ecosystems must be monitored to understand the role of aquaculture systems. While studies on the environmental performance of mussels or turbot production have been reported in the literature, Spanish rainbow trout (Oncorhynchus mykiss) has not received much attention despite its relative importance. In this sense, a Life Cycle Assessment (LCA) study of rainbow trout produced in a medium-sized plant in Galicia (NW Spain) was carried out in the present study. The study considered the production of round weight trout, as well as some commonly produced processed products, including filleting. The life cycle modelling included a high level of primary data in the foreground system. In addition to the widely considered environmental impact categories for this activity (e.g., global warming potential, terrestrial acidification and freshwater eutrophication), the recent proposed antibiotic resistance (ABR) enrichment impact category was included to explore the potential impact of antibiotic release in freshwater microbiota. The results highlighted the high contribution of aquafeed to most impact categories, due to upstream agricultural and fishing processes, whereas farm operation was responsible for the larger part of the impact in freshwater eutrophication, mainly due to direct emissions of nutrients from fish feeding. Amoxicillin release to recipient water bodies was the main driver to the ABR enrichment category. In contrast, the processing phase (i.e., gutting, freezing and packaging) showed low environmental burdens. In order to improve the environmental performance of the rainbow trout production system, decreasing the feed conversion ratio (FCR), shifting to renewable energy, using low environmental burden ingredients in aquafeed, and alternatives to control diseases without antibiotics could be considered.
Open linkAuthor(s): (Español) Daniel Hoehn, Ian Vázquez-Rowe, Ramzy Kahhat, María Margallo, Jara Laso, Ana Fernández-Ríos, Israel Ruiz-Salmón, Rubén Aldaco
(Español) In a context of increasing concern regarding food loss and waste (FLW) generation, different attempts have been made to standardize quantification methodologies. On the one hand, an important number of small-scale studies have been published that constitute direct measurement methodologies. On the other hand, the FAO Food Balance Sheets, which aggregate some of the prior studies, provides an indirect metric that has been applied using FLW coefficients in numerous food-related studies. However, to date, no standard methodology has been agreed upon to quantify FLW. This study performs an assessment of 237 studies in the field, aiming to identify existing FLW quantification methodologies, and if there is a need of developing alternative paths. Firstly, a descriptive review was performed. Secondly, an assessment of critical point of views was presented. For this, different critical voices in the scientific literature were retrieved, some of which highlight the high level of uncertainty and a certain degree of opacity in some of the most widespread FLW quantification and assessment reports. In this line, essential elements of quantification are being omitted. Moreover, the focus is being excessively placed on the role of the consumer, compared to the role played by agribusiness and large distribution chains.
Open linkAuthor(s): Luis Izquierdo Horna, Ramzy Kahhat Abedrabbo, Ian Vázquez Rowe
(Español) Municipal solid waste (MSW) generation forecasting has become an important tool for decision-making in urban environments, not only due to its essential role in effective waste management, but also because it provides an understanding of the complexity of the factors that govern it. Current research bases its forecast models (e.g., artificial neural networks, regression methods, three decision methods…) on predictive variables supported by pre-existing government information or, alternatively, on related studies with different site characteristics due to the lack of primary data from the specific sector. These assumptions and generalizations generate a different representation of the area of interest, raising the level of uncertainty of the results and reducing their level of reliability. The current review focuses on exploring the influence, relevance and opportunities for improvement when it comes to including or excluding sociocultural, environmental and/or economic variables in the solid waste forecasting process. Relevant information has been provided regarding the predictor variables considered to have better predictive power and, at the same time, limitations in data availability have been highlighted. Finally, it is concluded that the adoption of case study-specific predictor variables collected through primary data (e.g., questionnaires or surveys) would improve the predictive performance of the models providing a robust and effective tool for waste management. In addition, it is expected that the recommendations provided will be useful for future research related to MSW prediction and, thus, contribute to obtaining more representative results.
Open link