Menú

Publications

(Español) Developing a methodology to quantify mismanaged plastic waste entering the ocean in coastal countries

Author(s): Diana Ita Nagy, Ian Vázquez Rowe, Ramzy Kahhat Abedrabbo

(Español) Marine plastic accumulation has gained international attention in recent years. Sources, pathways, and environmental impacts are being currently studied to understand the complex interactions during waste, especially plastic, transportation to the sea. Rivers have been identified as debris corridors allowing transportation of mismanaged waste. However, there is also evidence of waste accumulation in river basins, suggesting they can also act as sinks. Thus, assuming a uniform and continuous transportation of waste through rivers towards the ocean may signify an oversimplification. This study proposes a methodology to estimate plastic release to the ocean, considering a more detailed characterization of each river basin, including natural attributes and manmade constructions that may act as barriers or boosters for this release. The methodology is exemplified using a case study for the Region of Piura, Peru, and estimating a range of 4.2 to 13.9 kg/person/year of plastic waste reaching the Pacific coast during 2018. These results, when compared with the existing literature, demonstrate more conservative estimations. This methodology is presented as a useful tool that can be easily applied to develop more accurate mismanaged waste dissipation along different compartments.

Download publication (2.13 MB)

(Español) Environmental performance of rainbow trout (Oncorhynchus mykiss) production in Galicia-Spain: A Life Cycle Assessment approach

Author(s): (Español) Joan Sanchez-Matos, Leticia Regueiro, Sara González-García, Ian Vázquez-Rowe

(Español) Aquaculture is an increasingly important supplier of food worldwide. However, due to its high dependence on agricultural and fishing resources, its growth is constantly constrained by environmental impacts beyond aquaculture production systems. Within the European Union, Spain accounts for approximately 25 % of total aquaculture production, which implies that environmental impacts in rivers and marine ecosystems must be monitored to understand the role of aquaculture systems. While studies on the environmental performance of mussels or turbot production have been reported in the literature, Spanish rainbow trout (Oncorhynchus mykiss) has not received much attention despite its relative importance. In this sense, a Life Cycle Assessment (LCA) study of rainbow trout produced in a medium-sized plant in Galicia (NW Spain) was carried out in the present study. The study considered the production of round weight trout, as well as some commonly produced processed products, including filleting. The life cycle modelling included a high level of primary data in the foreground system. In addition to the widely considered environmental impact categories for this activity (e.g., global warming potential, terrestrial acidification and freshwater eutrophication), the recent proposed antibiotic resistance (ABR) enrichment impact category was included to explore the potential impact of antibiotic release in freshwater microbiota. The results highlighted the high contribution of aquafeed to most impact categories, due to upstream agricultural and fishing processes, whereas farm operation was responsible for the larger part of the impact in freshwater eutrophication, mainly due to direct emissions of nutrients from fish feeding. Amoxicillin release to recipient water bodies was the main driver to the ABR enrichment category. In contrast, the processing phase (i.e., gutting, freezing and packaging) showed low environmental burdens. In order to improve the environmental performance of the rainbow trout production system, decreasing the feed conversion ratio (FCR), shifting to renewable energy, using low environmental burden ingredients in aquafeed, and alternatives to control diseases without antibiotics could be considered.

Open link

(Español) Climate change mitigation potential of transitioning from open dumpsters in Peru: Evaluation of mitigation strategies in critical dumpsites

Author(s): (Español) Jorge Cristóbal, Ian Vázquez-Rowe, María Margallo, Diana Ita-Nagy, Kurt Ziegler-Rodriguez, Jara Laso, Israel Ruiz-Sálmon, Ramzy Kahhat, Rubén Áldaco

(Español) Waste management is a critical policy towards the reduction of environmental impacts to air, soil and water. Many Latin American countries, however, lack a correct waste management system in many cities and rural areas, leading to the accumulation of unmanaged waste in illegal or unregulated dumpsites. The case of Peru is of interest, as it hosts 5 of the 50 largest dumpsites in the world. An erratic waste management compromises climate actions for Peru to commit with the Paris Agreement, as no correct closure systems are established for these dumpsites. Therefore, the main objective of this study is to assess the contribution of the past and present biodegradable waste produced and disposed of in the most critical open dumpsters to the overall annual greenhouse gas (GHG) emissions of Peru using the IPCC model. Thereafter, the climate change mitigation potential of possible dumpsite closure strategies based on a selection of technologies, including economic feasibility, were estimated. Results show that cumulative GHG emissions in 2018 for the 24 crit- ical dumpsites evaluated added up to 704 kt CO2 eq. and a cumulative value of 4.4 Mt CO2 eq. in the period 2019–2028, representing over 40 % of solid waste emissions expected by 2030. Mitigation potentials for these emissions tanged from 91 to 970 kt CO2 eq. in the ten-year period depending on the mitigation strategies adopted. The costs of these strategies are also discussed and are expected to be of utility to complement Peru's waste management commitments in the frame of the Paris Agreement.

Download publication (1.43 MB)

(Español) Embedding circularity into the transition towards sustainable agroforestry systems in Peru

Author(s): (Español) Alejandro Parodi, Gianfranco Villamonte-Cuneo, Ana Maria Loboguerrero, Deissy Martínez-Barón, Ian Vázquez-Rowe

(Español) Peru is promoting the adoption of agroforestry systems with the aim to halt the deforestation of tropical forests caused by smallholder farmers. However, deficient soil conservation practices and nutrient management are common among the targeted smallholders, hampering the success of this strategy. In this study, we explore the potential of valorizing municipal biowaste as compost to be used as soil amendment in coffee agroforestry systems and in silvopastoral systems. The analysis was concentrated in four Peruvian regions and the most populous city in each of them. For lands with coffee production, it was assumed that 90 kg N ha−1 (i.e., 50% of the N requirements) should come from compost, while for pastures, the requirement was 40 kg P ha−1. We found that composting could lead to large greenhouse gas (GHG) reductions compared with the current waste disposal methods (i.e., deep dumping and landfilling), as it only emits 5–10% of the GHG emissions produced with the other methods. Nonetheless, the area of agroforestry and silvopastoral systems that could be fertilized with compost obtained from the main city of each region is limited and insufficient. If all compost were to be used for the coffee agroforestry system, less than 3% of the coffee agroforestry area could be fertilized, while in the case of pastures, only 4% would be attained. Large amounts of compost could be obtained from Lima, the most populated city; however, its transportation to the agroforestry areas would increase compost GHG emissions by 15–60%. Although composting municipal food waste and loss may bring GHG benefits and should be promoted, its use as a fertilizer requires mixing with N-rich sources to improve its nutrient quality.

Download publication (1.46 MB)

(Español) Proposal for used electronic products management in Mexicali

Author(s): Ramzy Kahhat Abedrabbo, Marco Gusukuma Higa y (Español) T.Reed Miller, Sara Ojeda-Benitez, Samantha E. Cruz-Sotelo, Jorge Jauregui-Sesma.

(Español) Mexicali, a Mexican city located near the US-Mexico border, has faced several challenges related to adopting an
integrated e-waste management system. Thus, the main objective of this work is to propose a new system to be
implemented in phases. The current system is evaluated using several methodological approaches including field
studies, surveys, interviews, and quantitative modeling via material flow analysis. We suggest the need to
properly integrate both the formal and informal sectors to achieve the optimal system that mitigates environmental impacts while preserving the positive social and economic traits of the current system. Thus, without
supplanting the current reuse, refurbishment, repair and maintenance practices, a hybrid system is proposed,
based on a centralized facility that primarily handles those parts or materials that create environmental impacts
and health hazards if mishandled. Furthermore, a decentralized transition phase toward the new system is
recommended.

Download publication (817.03 KB)

(Español) Evolution of the stock of electrical and electronic equipment in the Peruvian residential sector

Author(s): Marco Gusukuma Higa, Ramzy Kahhat Abedrabbo, Kathia Cáceres Huisacayna

(Español) Consumption of appliances in the residential sector in Peru has been growing continuously during the last 20 years. Although social benefits due to this growth are evident, there are also some related environmental impacts in the use and end-of-life (EoL) phases (e.g., inadequate handling or disposal at the EoL stage). Nevertheless, there is also a hidden potential in the growing stock of household appliances, such as their potential exploitation as resources of industrial materials found in urban areas. Thus, the aim of this research paper is to analyze the evolution of the adoption of electronics in Peruvian households and estimate the stock of electrical and electronic equipment and related materials in the residential sector from 2001 to 2019, and greenhouse gases (GHG) emissions due to its use. Material flow analysis is the main methodology used in this research and its application relies on different strategies and the integrated use of official sources. Moreover, a Peruvian input–output table and associated environmental matrices were used to calculate GHG emissions. Results indicate that, in 2019, an average household possessed between 86 and 121 kg of appliances, which means the total stock of household appliances in Peru was in the range of 805,000 to 1,134,000 metric tons, an increase in mass of 70–95% by 2019 compared to 2001. These results will be useful to estimate the urban stock of appliances in the residential sector to help policy-makers design and implement an adequate e-waste management system that comprehends the potential of secondary materials embedded in these products.

Open link

(Español) Prevalence of microplastics in the ocean in Latin America and the Caribbean

Author(s): Diana Ita Nagy, Ian Vázquez Rowe, Ramzy Kahhat Abedrabbo

(Español) The release of microplastics to the ocean is an increasing global environmental concern. The specific characteristics of the Global South (e.g., widespread mismanaged waste and wastewater) make this an even greater
challenge. The current study performed a critical review related to the prevalence of microplastics in the ocean
in Latin America and the Caribbean, analyzing also the possible sources of microplastics release to the marine
environment. A majority of the studies assessed point towards mismanaged waste, inland or offshore, as well as
mismanaged wastewater as critical sources of plastic pollution into the ocean. However, there is a need to delve
into the effects that these microplastics are generating on local biota and human health.

Download publication (366.39 KB)

Introducing a Degrowth Approach to the Circular Economy Policies of Food Production, and Food Loss and Waste Management: Towards a Circular Bioeconomy

Author(s): Ian Vázquez Rowe y (Español) Daniel Hoehn, Rubén Aldaco, María Margallo, Jara Laso, Israel Ruiz-Salmón, Francisco José Amo-Setién, Rebeca Abajas-Bustillo, Carmen Sarabia, Ainoa Quiñones, Alba Bala, Laura Battle-Bayer, Pere Fullana-i-Palmer

(Español) There is a growing debate surrounding the contradiction between an unremitting increase in the use of resources and the search for environmental sustainability. Therefore, the concept of sustainable degrowth is emerging aiming to introduce in our societies new social values and new policies, capable of satisfying human requirements whilst reducing environmental impacts and consumption of resources. In this framework, circular economy strategies for food production and food loss and waste management systems, following the Sustainable Development Goals agenda, are being developed based on a search for circularity, but without setting limits to the continual increase in environmental impacts and resource use. This work presents a methodology for determining the percentage of degrowth needed in any food supply chain, by analyzing four scenarios in a life cycle assessment approach over time between 2020 and 2040. Results for the Spanish case study suggested a degrowth need of 26.8% in 2015 and 58.9% in 2040 in order to achieve compliance with the Paris Agreement targets, highlighting the reduction of meat and fish and seafood consumption as the most useful path.

1 2 14 15
Share via:
Send to: