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A B S T R A C T   

Alluvial small-scale gold mining (ASGM) mining in the Amazon is expanding fiercely, generating severe envi-
ronmental degradation, which includes the fast disappearance of primary forests in a highly biodiverse area of 
the world. Different factors motivate the growth of mining in the areas and understanding this expansion is 
important to safeguard protected areas or implement strategies to mitigate the related social and environmental 
impacts. Thus, the goal of this study is to apply machine learning techniques to explore gold mining expansion in 
Madre de Dios, in the Peruvian Amazon, and to identify possible future hotspots of these activities. Using an 
unsupervised learning algorithm and a random forest classification model, past expansion trends were analyzed 
and an explicit geo-spatial model was built. Results demonstrate that proximity to infrastructure is not always 
indicative of high mining probability. In fact, when analyzing the spatial distribution of model accuracy, it is 
observed that model performance decreases in clusters where accessibility and mining activity showed opposite 
trends. In contrast, the models yield accuracies greater than 0.9 when accessibility-related variables stand out as 
the most important. The model, which is flexible and reproducible, demonstrates to be useful to enhance decision 
making when implementing geo-spatial policies to address the problem of ASGM expansion in the Amazon.   

1. Introduction 

The thirst for gold has triggered through history multiple extraction 
systems with heterogeneous outcomes when observing their environ-
mental, social and economic impacts [1,2]. Currently these activities are 
still common practice in different parts of South America, such as 
Colombia and Brazil [3]. In the particular case of the Peruvian Amazon, 
gold mining, especially in the region of Madre de Dios (MDD), is 
responsible for the use and release to the environment of large amounts 
of mercury [4] and the deforestation of large areas of primary rainforest 
[2,5]. Since 1984, more than 100,000 ha. have been deforested in the 
region, with subsequent impacts on climate change [6,7]. 

Once promoted by the government, alluvial, informal and illegal, 
mining activities in MDD have expanded considerably in the past 
decade, mainly due to the rapid increase of the price of gold [8]. 
Furthermore, the construction of the Interoceanic Highway (IH) that 
facilitates accessibility to extraction areas to miners, equipment and 
machinery, has consolidated mining operations in many zones [9]. 
Additional triggers of alluvial small-scale gold mining (ASGM) are the 
lack of labor opportunities in the Peruvian Amazon and the desire of 

local communities to attain economic prosperity. 
However, there are some deterrents related to ASGM activities in 

MDD, such as interdictions performed by the government intended to 
eliminate or at least discourage mining operations in restricted areas (i. 
e., national reserves or parks). Probably the most successful interdiction 
was “Operación Mercurio”, an ongoing operation initiated in 2019 in La 
Pampa, a well-known illegal mining area in the buffer zone (BZ) of the 
Tambopata National Reserve, which managed to reduce deforestation 
by 90% in the area [10]. Nevertheless, the success of interdictions 
strategies is difficult, if not impossible, to achieve. Orographic barriers 
or the lack of rule of law in many areas, among other factors, are some 
issues that explain the relative failure of these strategies in recent years. 

Solutions concerning potential future expansion patterns of mining 
activities would be helpful in terms of policy support in order to better 
organize expansion activities, avoid further expansion in protected areas 
(PAs), or mitigate related environmental impacts. The determination of 
the main drivers of informal and illegal mining expansion in Peru, 
particularly in MDD, is crucial to establish effective policies to control 
the expansion process itself, but also to determine damage mitigation 
actions in terms of human health [11,12], mainly referred to local 
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communities, and ecosystem quality [7]. However, understanding the 
triggers and expected behavior related to the expansion of this complex 
system is a difficult endeavor. Hence, we argue that exploring the po-
tential expansion of this activity through sophisticated computational 
tools can allow a more efficient management of the problem. 

1.1. Understanding ASGM 

Some methodological approaches have been applied in the literature 
with the goal of understanding the patterns of ASGM expansion in the 
Amazon. For instance, Swenson and colleagues [13] identified defor-
ested areas due to ASGM in MDD for the period 2003–2009 using remote 
sensing methods and statistical approaches to study the relationship 
between deforestation, import of mercury and the price of gold. Simi-
larly, Asner and Tupayachi [14] and Asner et al. [15] have identified an 
increase in the loss of protected forest due to the acceleration of mining 
activity in the last decade, suggesting accessibility to the area as an 
important driver of this phenomenon. Another example focusing on the 
Brazilian Amazon can be found in Lobo and colleagues [16]. The authors 
identified deforestation due to alluvial gold mining in the lower section 
of the Tapajos River Basin, analyzing the relationship between the his-
torical deforestation and variables such as proximity to roads and soil 
types. Finally, Caballero-Espejo et al. [6] used remote sensing methods 
to identify ASGM areas during the period 1985–2017. The authors 
analyzed the historic expansion of mining activities throughout MDD 
considering the evolution of the price of gold, as well as the type of 
machinery and the geographic location of deforestation. Moreover, in a 
more recent publication, Alvarez-Berrios et al. [17] studied the effect of 
formalization of ASGM by modelling changes in deforestation due to 
formalization between 2001 and 2014 using a parametric regression 
model. 

All the studies mentioned above relied on retrospective approaches 
and statistical or parametric models to understand alluvial gold mining. 
However, most of these contributions lack a prospective orientation and 
lack a spatial explicit interpretation of the findings. Moreover, as far as 
we were able to ascertain, studies focusing on the expansion of mining 
activities using machine learning approaches in the Amazon are 
currently not available in scientific literature. 

1.2. Machine learning methods 

Artificial intelligence applications, such as machine learning (ML), 
have become useful tools to enhance analytical capabilities in society 
[18]. In fact, ML has steadily become an important method to be applied 
in industrial ecology, as it provides an efficient pathway towards data 
innovation, enhancing the capacity to map energy and material flows 
and stocks [19], while improving decision support systems [20]. In this 
context, ML techniques have been applied to predict: i) environmental 
impacts [21]; ii) changes in crop production [22]; iii) 
household-induced environmental impacts [23]; or, iv) variations in 
greenhouse gas (GHG) emissions due to vehicle fleet electrification [24]. 
In contrast to traditional statistical approaches, ML methods propose the 
construction of functions that map input variables to an output variable 
by using a function constructed exclusively from data [25]. This 
modelling approach has been used extensively in spatially explicit 
models, especially in the study of deforestation and land-use changes 
[26–28], but, to the best of our knowledge, there are still no imple-
mentations of these methods focusing on alluvial mining and accessi-
bility variables. 

In the current study, ML methods have been applied as a novel 
perspective to analyze the trends of ASGM. More specifically, the main 
goal is to analyze past mined areas to identify insights in terms of their 
dependency to spatial variables and to predict potential future hotspots 
of mining activity expansion in MDD. Firstly, we want to know if mined 
areas and the selected proximity variables follow any observable dis-
tribution or pattern along the whole area of study. Secondly, we aim to 

evaluate the predictive capacity of the selected variables and their utility 
to locate future hotspots of mining activity. To this end, we propose the 
use of an unsupervised learning algorithm (i.e., X-means), and a classi-
fication model (i.e., random forest–RF) for the descriptive analysis and 
hotspots prediction, respectively. 

The novelty of the approach proposed is based on two main pillars: i) 
to analyze in a descriptive and spatial manner the past expansion of 
mining activities; and, ii) to explore the effectiveness of using a ML 
model to identify future potential hotspots of mining activity. In both 
cases, we propose the use of explicit geo-spatial information where 
physical and anthropogenic publicly available variables are considered. 
All the analysis and calculations were performed on the cloud-based 
computing framework, Google Earth Engine – GEE [29]. We expect 
this approach to be of utility for academics working on prospective ML 
methods linked to deforestation, especially in other tropical areas of the 
world. Nevertheless, the case study selected can be considered a useful 
tool to develop policy support actions in the Peruvian Amazon. 

2. Materials and methods 

2.1. Study area 

The analysis performed considered the alluvial mining area of the 
region of MDD, which is mainly located throughout the riverbeds of the 
tributary rivers of the Madre de Dios river. The region of interest was 
delimited by an approximate rectangular window with an area of 6200 
km2, including important mining settlements, areas with scattered ac-
tivities, and areas of potential emergence of these. The region of interest 
described was used as the geographical reference throughout the 
methodological framework, including sampling, data analysis and 
model construction. A map with the location of the area of interest can 
be found in Fig. S1 of Supplementary Information. From a temporal 
perspective, the study focused on the period 2012–2017 based on two 
main characteristics of the general trend of mining activities in MDD. On 
the one hand, the operational phase of the IH began in 2011, triggering 
accessibility in the region and representing a relevant benchmark of the 
current infrastructure layout in MDD. On the other hand, the annual 
mining rates started to show similar trends during this period, showing a 
resembling distribution of mined area among relevant mining clusters 
(e.g., Huepetuhe, Delta or La Pampa …). 

2.2. Data acquisition and processing 

The analysis performed relied on a Geographical Information System 
(GIS). In this sense, model construction and analysis used a database 
structured, mainly, from public georeferenced data. The selected vari-
ables aimed to be predictors of mining pressure in the area then were 
associated with accessibility and other geophysical properties of the 
environment. The importance of accessibility as a driver of deforestation 
and mining activity has been suggested by several studies associated 
with mining activities [14-15,30-31], and with other sources of defor-
estation in similar Amazonian regions [28]. Physiography data were 
obtained from Theobald and colleagues by combining landforms and 
lithology [32]. Digital elevation data of 1 arc-second resolution (about 
30 m) were obtained from the Shuttle Radar Topography Mission 
(SRTM) led by NASA in 2000, and globally released in 2015. Clay and 
sand content were directly obtained as rasters globally gridded at a 250 
m resolution based on geostatistics and performed by ML techniques 
[33,34]. 

These four raster images are already stored in GEE. Road maps were 
obtained from the Ministry of Transport as shape files that included the 
distribution of roads throughout the Peruvian territory, as well as at-
tributes describing their characteristics (e.g., primary, secondary, ter-
tiary, constructed or projected) [35]. PAs, BZs and villages were 
obtained in shape format from the Ministry of Environment and they 
indicate the geographic boundaries of these designated areas [36]. 

G. Larrea-Gallegos et al.                                                                                                                                                                                                                       



Case Studies in Chemical and Environmental Engineering 7 (2023) 100353

3

Similarly, polygons and vectors that indicated rivers and ponds were 
obtained from HDX [37]. Finally, mining data were obtained from 
Caballero-Espejo and colleagues [6] as a shape file. This file considers 
deforestation due to ASGM during the period 1984–2017, as well as 
attributes with mining activity characteristics, such as type of mining 
activity that generated the deforestation (e.g., heavy machinery or 
suction pumping). These data derived from the use of use of Landsat 
imagery and the integration of classification algorithms, visual inspec-
tion, and manual processing. Any reference to mining activity herein-
after will allude to deforestation due to mining activities. A summary of 
variables utilized can be found in Table S1 of Supplementary 
Information. 

Once the data were collected, these were entirely handled in GEE. 
Raster files were directly uploaded and shape files were processed using 
GIS to extract only the attributes of interest. Thereafter, shape files were 
converted to rasters and resampled using a resolution of 100 m per pixel, 
leading to a stack of raster maps with the same resolution. The raster 
stack contains implicit data which may not provide sufficient informa-
tion. However, for model construction purposes, the algorithm selected 
requires input data to be represented in a more explicit manner [38]. For 
this, different features were formulated in order to be included in the 
database and to improve the final performance of the predictive model. 

The feature engineering process consisted of a variety of GIS-based 
calculations that implied, in some cases, a complete modification of 
the initial data. This followed a rationale like the one found in the 
literature, where important variables linked to deforestation and other 
land-use changes are commonly described as a type of proximity or in-
tensity. To ease comprehension, we found it convenient to analyze 
features following a dual classification based on their temporal char-
acteristics: static and dynamic. 

2.2.1. Static features 
Static features are those with values that are not time-dependent, or 

at least those that are not supposed to change in a short period of time (e. 
g., 5 years). These are, mostly, geographic and physical variables which 
describe the natural environment and are assumed to remain invariant 
during modelling and prediction. Altitude, physiography, clay content, and 
sand content did not require any additional processing and they were 
imported directly from GEE. Physiography presents a map of 15 classes. 
Altitude contains the pixel elevation. Clay content and Sand content pre-
sent the fraction of clay and sand content up to 2 m depth. A slope feature 
was calculated based on altitude and describes the slope in degrees. 
Latitude and Longitude features were also considered to indicate the po-
sition of a pixel. Finally, two proximity features, distance to rivers and 
distance to ponds, were obtained by calculating the Euclidean distance 
from each pixel to the nearest river or pond, respectively. 

2.2.2. Dynamic features 
These features describe changing phenomena linked to anthropo-

genic activities or elements, such as infrastructure or human settle-
ments. In this sense, dynamic features might have different values 
depending on the year of observation and constitute the features that 
can be modified to predict a given scenario. To this effect, a first set of 
proximity features were calculated from the road maps, PAs, BZs and 
villages, which represented the Euclidean distance from any pixel to 
these infrastructure or designated areas. In this case, the available data 
did not distinguish the year of construction of the roads nor the year of 
establishment of the villages; therefore, the values of each pixel 
remained constant for the period 2011–2015. However, because of their 
nature and for the sake of consistency, these were still classified as dy-
namic features. 

A second set of features were calculated from the mining activity 
raster. The mined feature, which was treated as a dichotomous variable, 
indicated if there was an occurrence in the corresponding year. This 
feature was used as the variable to predict, but it also served as an input 
in the generation of other features. For instance, for every previous year 

in the window of time, we created rasters that contained the quantity of 
mined pixels surrounding every pixel in a radius of 400 m. The rasters of 
mined neighbors and mining activities for previous years were included 
as the i_neighbors feature and the i_mined feature, respectively. For both 
features, the prefix i made reference to the previous ith year counting 
from the corresponding mined feature year. 

Additionally, a mining rate map was generated to represent the 
tendency of mining activities surrounding a certain pixel in a short 
window of time (i.e., 4 years). The main assumption for this is that 
mining is more likely to occur in areas where this activity is already 
happening. We selected a linear regression (i.e., temporal reduction) of a 
convolution of mined pixels (i.e., spatial reduction) as a strategy to 
reduce the multidimensional nature of this tendency. For this, a linear 
regression was fitted for each pixel using the year and the sum of sur-
rounding mined pixels as variables. This allowed us to extract the pa-
rameters of the regression (i.e., slope of the curve and intercept, beta and 
alpha hereinafter) and to use them as a beta feature and an alpha feature 
(see Fig. S3 in Supplementary Information). For instance, pixels with a 
positive beta value indicate that in that specific window of time, the 
mining activity in a radius of 400 m has increased. Conversely, a 
negative value may suggest that the activity has been decreasing. A 
value close to zero can be associated with no mining activity or recurrent 
mining activity at a similar rate. 

2.3. Algorithms selection 

The selection of the algorithms responded to initial insights obtained 
from a descriptive data analysis in which we aimed to explore correla-
tions and insights among variables. In this stage, paired correlation 
matrices were built for all variables. The use of a clustering algorithm 
was justified by the presence of multimodal distributions and hetero-
geneous correlations with the geographical positions that suggested the 
presence of distinguishable clusters (see Section 2.4). X-means is a 
clustering algorithm that groups data in a number of clusters, X, that is 
optimally determined by running multiple instances of the K-means al-
gorithm [39]. In K-means, every pixel is assigned to a cluster where the 
Euclidean distance between the cluster centroid and the pixel, in a 
multidimensional space, is the minimum [40]. We selected this clus-
tering algorithm (i.e., X-means based on K-means) because of two main 
reasons. First, it is an unsupervised classification technique that has been 
widely used in studies dealing with geo-reference data, especially when 
dealing with low dimension datasets of large sizes [41,42]. In fact, as 
discussed in Wu et al. [41], K-means has shown to be a valid alternative 
when it respects to answering questions related to spatial-clustering and 
attributes clustering. Secondly, K-means and X-means have a fast and 
robust code implementation in GEE which integrates conveniently with 
GEE parallelized architecture. This allowed us to sample, modify and 
visualize the results of the clustering exercise repeatedly and on-the-fly 
regardless of the size of the area of interest (i.e., 26 ha). 

RF is an ML algorithm where the combination of independent deci-
sion trees with low bias and high variance generates an ensemble “for-
est” with low bias and low variance [43]. This nonparametric algorithm 
stands out for its robustness in terms of overfitting and multicollinearity, 
its low sensitivity to outliers, and its capacity to deal with categorical 
and continuous variables [44,45]. In fact, recent studies focused on 
spatio-temporal phenomena still rely on RF as a component of the 
computation pipeline in the study of spatial phenomena in tropical areas 
(e.g., deforestation) [46,47] or when trying to identify other types of 
spatial patterns [48,49]. Moreover, when oriented towards spatial pre-
diction, this algorithm can match the performance of feed-forward deep 
learning models that predict deforestation using accessibility variables 
[28]. This occurs due to the low dimension of the spatial dataset and the 
high prediction capacity of accessibility variables. Moreover, RF does 
not require data normalization and is faster during training and pre-
diction. Secondly, since the objective of the study is to identify hotspots 
and insights, we prioritize the practicality in the implementation, since 
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RF has also been implemented in GEE and is suited for performing 
predictions and visualizing in real time (see SI). 

2.4. Sampling, analysis and data clustering 

The sampling exercise consisted in the construction of a structured 
database obtained by sampling pixels from the rasters previously 
generated. This structured database was meant to serve as the source for 
the data analysis, and as training and validation data for model con-
struction. We built paired correlation matrices in which we observed the 
presence of noticeable multimodal distributions among the distance 
variables when paired with location-related variables (i.e., latitude and 
longitude), meaning the correlation based on proximity was not con-
stant in the whole area of study. To deal with this and to include the 
heterogeneity of the region of interest into the sampling exercise, we 
clustered the mined pixels from period 2011–2015 using the X-means 
algorithm. For this clustering task, we only considered the static and all 
the proximity features. The resulting clusters represent groups of ho-
mogenous mined pixels not only in terms of geographical location (i.e., 
altitude, latitude and longitude), but also related to distance to infra-
structure, soil, geomorphology, and hydrological characteristics. The 
resulting raster image containing pixels’ cluster labels was included as a 
feature and was used for both data analysis and model construction. 
Moreover, since this database should represent the area of study and the 
mining phenomenon and may condition the performance of the model, 
we later decided to extract multiple samples as explained below. 

The training and validation sets were built combining different 
sampling regions and criteria. Regarding the sampling regions, two 
different regions were considered: the complete area of study (i.e., FULL 
hereafter) and a smaller rectangular region that encapsulated historical 
mining areas (i.e., Huepetuhe, La Pampa and Delta), labeled as Historic 
Region (i.e., HR hereafter). The logic of this approach was to observe 
whether models trained with data sampled only from this HR could lead 
to a realistic or reasonable prediction of mining hotspots outside the 
training region. 

Regarding the sampling criteria, our main objective was to reduce 
the model bias towards predicting a mined or non-mined class only. For 
this, the training dataset was sampled in a stratified manner. Conse-
quently, we considered two sampling criteria. In the first case, we 
sampled an evenly distributed number of mined and non-mined pixels 
from the mined feature (i.e., 0 and 1) [50]. In the second case, we 
sampled the same number of mined pixels from each cluster. This led to 
an evenly distributed sample of mined and non-mined pixels, where the 
former was also evenly distributed among their clusters’ labels. For the 
sake of simplicity, hereafter both criteria will be labeled as “strat-
ified-only” and “stratified-from-clusters”, respectively. 

In all cases, only pixels 600 m apart were considered in order to 
reduce spatial autocorrelation among samples, similarly to the meth-
odological choice proposed by Mayfield and colleagues [26]. All models 
were constructed using the combination of these sampling criteria, 
meaning that the rasters were sampled multiple times. For every sam-
pling combination, data were divided into training and validation sets 
which included 70% and 30% of the sampled data, respectively. For the 
specific case of the HR, an additional validation set was sampled from an 
area that encompassed the mined pixels located outside the training 
zone. 

2.5. Modelling stage 

Two modelling perspectives were set. The first one, a static-oriented 
perspective, used only static and all the distance to infrastructure fea-
tures. For this, we merged mined pixels from the period 2011–2015 into 
a single image from where data were sampled following the before 
mentioned sampling strategies. Our target was to observe if the model 
could detect hotspots of high probability of mining activity under the 
assumption that, for some areas, these static constraints may influence 

the decision to initiate (or continue) mining activities. For this 
perspective, a total of 8000 pixels were randomly sampled, resulting in 
6400 and 1600 training and validation pixels, respectively. 

The second perspective was temporal-oriented and considered all the 
static and dynamic variables. The training database was constructed by 
sampling a subset of mined and non-mined pixels corresponding to years 
2011, 2013, and 2015 following the sampling strategies previously 
stated. The features associated to a mined pixel in a given year contained 
information that corresponded to the past. More specifically, we 
considered a time span of 2 years in order to prevent the model from 
depending only on the mined-derived features (i.e., mining rate, mined 
neighbors). In this sense, the outcome of each prediction task could be 
interpreted as the probability of mining activity on a given pixel for a 
year t, based on data from years t-2, t-4, and t-6. In contrast to the first 
perspective, the model was evaluated based on its capacity to predict 
pixels that were going to be mined in the following two years. For this 
perspective, we trained and evaluated the models to identify mining 
hotspots for year 2017. For each sampling strategy, a total of 24,000 
pixels were sampled (i.e., 8000 per year), resulting in 16,800 and 7200 
sampling and training points, respectively. 

The combination of sampling regions and strategies led to a total of 4 
sampling procedures: FULL + stratified-from-clusters (A); FULL +
stratified-only (B); HR + stratified-from-clusters (C); and, HR + strati-
fied (D). These sampling strategies were used to train both static- and 
temporal-oriented models varying the hyperparameters such as the 
number of trees (i.e., from 10 to 200), the maximum amount of leaf 
nodes in each tree (i.e., from 10 to no-limit), and the percentage of data 
out-of-bag (i.e., from 0 to 100%). The best set of hyperparameters for 
every model was selected using accuracy (ACC) and the area under the 
curve ROC (AUC) as metrics. Finally, the performance of the trained 
models was analyzed and compared using ACC, AUC, and f1-score (F1), 
and recall (REC) as metrics. 

The RF models were constructed utilizing the SMILE’s RF algorithm 
which is implemented as a built-in function in the GEE web API (i.e., ee. 
Classifier.smileRandomForest). A graphical representation of the 
computational pipeline of the modelling stage can be found in Fig. S2 of 
Supplementary Information. 

3. Results 

3.1. Descriptive analysis based on clustering 

When the distribution of mined pixels based on the distance to 
infrastructure features is observed, many of them show a multimodal 
curve (see Cluster 0 in Fig. 1). This occurs mostly because mined pixels 
are not homogeneously distributed around infrastructure. Instead, they 
follow a heterogeneous geographic distribution that results in visually 
distinguishable clusters (see Fig. 1). This heterogeneity hinders the ca-
pacity of the model to interpret the geographical distributions and the 
relationship among mined pixels and the features under evaluation, 
especially because there is not an easily distinguishable pattern that can 
be valid for the whole area of study. In this sense, we analyzed the 
training data considering also different clusters that were obtained from 
the unsupervised classification stage explained above. 

The implementation of the X-means algorithm resulted in 13 clusters 
that were used to label each mined pixel with a corresponding cluster 
label. We analyzed the relationship between mining occurrences and the 
different distance variables (i.e., primary road, secondary road, tertiary 
road, protected area, ponds, rivers, and villages), mining type (i.e., heavy 
machinery and suction pumping) and the year of mining (i.e., from 2011 
to 2015) for every resulting cluster. Consequently, only the distance 
variables were considered during the clustering task, while mining type 
and year of mining were included after cluster labels were assigned. 

Regarding the proximity to roads features (i.e., primary (a), sec-
ondary (b) and tertiary (c)) in the different mining sites, two main 
patterns can be distinguished. On the one hand, in clusters 1, 3–10 and 
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13, mining activity occurs approximately 5–10 km away from the access 
to any type of road. Other important arteries that connect mining ac-
tivities with the supply of resources and transportation of people are 
rivers. Most of the clusters had a mean distance to rivers lower than to 
any type of roads; however, this fact may not only be connected to 
accessibility but may be also a consequence of the intrinsic character-
istics of some alluvial mining methods that find most of their extraction 
potential near riverbeds and other water bodies (e.g., oxbow lakes). 

On the other hand, mining activities identified in Cluster 11, in 
contrast, have occurred in areas with low accessibility and relatively 
distant from water bodies (see e, f and g in Fig. 3). Moreover, when 
analyzing proximity to villages, clusters 4–5, 9 and 11 are those located 
farthest away from human settlements. Therefore, Cluster 11 is the most 
distant cluster from all infrastructure elements (i.e., roads and human 
settlements) evaluated, as shown in Fig. 2. 

Regarding PAs, observations suggest that they actually act as 

repellents of mining activity. Thus, only 5 out of the 13 clusters (i.e., 7–9 
and 12–13) present a considerable distance from these areas, while other 
clusters have a distance, on average, that ranges from 5 to 15 km (see 
Fig. 3a). These low distances may imply that mining activities are 
occurring inside BZs, such as the case of the Amarakeri Reserve (see 
Fig. 3b). 

It is important to note, however, that Cluster 11, which was earlier 
identified as being the most distant from infrastructure elements and 
includes most of the area of La Pampa [6], shows mining activity inside 
BZs and PAs. More specifically, the activities occur inside the PA of the 
Tambopata National Park and its BZ (see Fig. 4b). This clustering ex-
ercise led us to identify areas where the absence of this repellent effect is 
suggested (see Fig. 4a). 

Regarding the mining type (see distribution of mining type in Fig. 1), 
clusters 1–3 and 6–13 are areas where mainly heavy machinery and 
suction pumping techniques are applied for gold extraction, respec-
tively, whereas clusters 4 and 5 include both types of mining without a 
clear predominance. Finally, temporal change presents the evolution of 
mining activity (i.e., area) for each year. While the overall mined area in 
the region of interest has increased, the evolution of mining activity for 
the different clusters is heterogeneous. For instance, clusters 1–2, 4–7 
and 12 show a slight reduction in mined pixels from year 2014–2015, 
while the remaining clusters show an increase in mining activity during 
the same period. The rapid increase in mining activity observed in 
Cluster 11 starting in 2013 constitutes the most remarkable 
augmentation. 

3.2. Model training and validation 

After varying the number of trees and nodes, we identified that for all 
sampling strategies, model metrics converged to stable values after 
reaching 100 trees (see Fig. S5 in the SI). In parallel, we also noted that 
the number of nodes does not influence the model performance after a 
value of 400. A feature importance ranking revealed that distance to 
secondary roads, ponds, parks and villages accounted for more than 50% 
of the importance in the RF model (see Fig. S4 in the SI). 

Fig. 5 shows the scores for models tested on validation data resulting 
from splitting the sampled dataset and from the additional testing 

Fig. 1. Visualization of 13 mining clusters obtained by using X-means algorithm in Madre de Dios (Peru). Mining activity distributions according to distance to 
infrastructure features (from (a) to (h)), activity evolution (j), and mining type (i) for each cluster are shown. 

Fig. 2. Density curves represent distance of mined pixels to accessibility 
infrastructure (roads) for clusters 1, 2, 4, 5, 6, and 11. 
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sample (i.e., indicated as *) used in samples C and D. As can be noted, for 
both static-oriented and temporal-oriented approaches, taking the FULL 
area of study as the sampling region always produces models with 
higher performance for every metric. Similarly, in all cases, predictions 
performed on test data sampled from inside the HR showed higher 
scores than predictions obtained using samples from outside the HR. 
This behavior is expected if we consider that it is easier to predict 
samples linked to locations closest to the training data. 

When focusing on ACC and AUC, it can be noted that the selection of 
the sampling criteria does not produce significant differences in the 
performance metrics. However, this trend changes when observing F1 
and REC in the static-oriented models. In the case of these metrics, the 
proposed stratified-from-clusters criteria did not yield models with better 
performance if compared with stratified-only criteria. In the case of the 
temporal-oriented models, both sampling criteria do affect the metric’s 
values that are more influenced by the sampling region. 

3.3. Prediction maps and empirical validation 

Once the visual analysis of maps resulting from predicting mining 
activity was concluded, the best-performing models that were visually 
meaningful for the discussion were selected. Fig. 3 shows the prediction 
of mining activity using the models selected, whereas the complete set of 

predicted maps can be observed in the SI. In the first place, Fig. 6a 
represents the results from the static-oriented (referenced with the prefix 
S- hereinafter) model using the FULL area of study as the training zone 
(i.e., model S-A). Secondly, Fig. 6b and c shows the results of the static- 
oriented model using the HR as training area with different sampling 
criteria (i.e., S-D and S–C). Finally, Fig. 6d shows the prediction of the 
temporal-oriented (referenced with the prefix T-hereafter) model for year 
2017 using HR and stratified-from-clusters criteria (i.e., T-C). 

Three prominent zones of analysis were selected (see Z1, Z2, and Z3 
in Fig. 6). For instance, Z1 and Z3 are located outside the HR where 
predictions vary significantly depending on the model. For these zones, 
model S-A (Fig. 6a) shows higher probability ratios if compared to the 
results from model S-D (Fig. 6b) and S–C (Fig. 6c). Moreover, in Z1 all 
models predict similar mining footprints, while in Z3 only model S-A 
shows a defined footprint. With regards to Z2, located within the HR, the 
difference between mining probabilities among the three models is less 
notorious; however, a higher probability and footprint can be found in 
the first sampling strategy. Nevertheless, none of the models shown was 
capable of identifying a notorious area of mining in Z2 that corre-
sponded to year 2017 (Fig. 4b), a period that was not considered in the 
training sample. 

When observing the temporal model (i.e., T-C in Fig. 6d), it can be 
noted that the pixels predicted describe a more demarcated footprint, 

Fig. 3. Density curves (a) representing the distribution of mined pixels for specific clusters (1, 2, 4, 5 and 6) in the surroundings of the Amarakaeri Reserve (b).  

Fig. 4. Density curves (a) representing the distribution of mined pixels for specific clusters (3, 10, 11) in the surroundings of the Tambopata National Park (b).  
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where the boundaries between deforested and non-deforested areas are 
clearly distinguishable. This is mainly due to the inclusion of alpha and 
beta features into the modeling. Consequently, we can assume that these 
mining rate proxies have a high influence on the appearance of the 
prediction map. Moreover, if attention is given to the probability values, 
distinguishable sectors of intense red (i.e., >0.7) and light orange (i.e., 
>0.5 and <0.7) match areas of vigorous (i.e., La Pampa) and active but 
diminishing (i.e., Huepetue) mining, respectively. In contrast to the 
static models, the model in Fig. 6d cannot easily predict values over 0.5 
if there was no previous mining activity nearby. Nevertheless, we 
identified areas where new mined pixels were predicted despite the 
absence of mining in previous years. 

When observing zones Z1, Z4 and Z5 in Fig. 7 we can distinguish that 
model S–C has the capacity to identify areas with high probability of 
mining even when these were completely ignored during the training 
step. For the case of Z1, the model could grossly predict mining that 
already occurred years ago, while for Z4 and Z5 the model could predict 
the footprint of the riverbeds where the mining activity had started in 
the last year of analysis (i.e., 2017). Interestingly, monitoring and 
governmental reports indicate that at the time the current study was 
being written (i.e., late 2021), the Pariamanu riverbed (i.e., Z5) 
experimented outbreaks of mining activity as previously reported [51]. 

3.4. Prediction error and clustering 

Given the inconsistencies in the model’s accuracy throughout the 
area of interest, we conducted an analysis to determine in which clusters 
the model performed worst. For this, we sampled 4000 random pixels 
and predicted their probability of mining activity. We later compared 
the predicted classification (i.e., using a threshold of 0.5) with the real 
data to separate them in two groups: “correct” and “incorrect”. Fig. 8 
shows the ratio of correct and incorrect predictions for each cluster. As it 
can be observed, clusters 3, 11 and 12 are the ones with a higher pro-
portion of incorrect predictions when comparing with the rest of clus-
ters. With respect to clusters 11 and 12, these correspond to the clusters 
previously identified as distant from infrastructure (i.e., roads and 
human settlements). It appears that in these areas the variables selected 
are not as good predictors as they are when evaluating other clusters. 

4. Discussion 

The main areas with high mining probability were identified in the 
town of Puerto Pariamanu (12◦26′0′′S; 69◦15′0′′W) and the surround-
ings of Puerto Maldonado, the region’s capital. Interestingly, for the 
former there is evidence of recent mining activity in the period 
2019–2020, as reported by Mongabay [52]. Our results match with this 
trend and are plausible if we consider that many mining activities tend 
to occur close to waterways and human settlements. In fact, despite the 
variations in results due to model selection, we identified that predicted 
mining in this area is recurrent in different models (i.e., T-C and S–C). 
Moreover, we consider that sectors between the city of Puerto Maldo-
nado and Tambopata National Park require particular attention because 
there is still no established land use in the area [53], and mining activity 
is bound to continue degrading neighboring areas of one of the most 
visited national parks in the country [12,54]. 

Regarding sampling strategies, we argue that these have an impor-
tant influence on the geographic representation of the predictions, even 
if they yield models with similar performance metrics. For example, 
when comparing model S-A with real mining, the predicted mining ac-
tivity footprint has bigger dimensions than the real mining areas. 
Moreover, areas that were not previously mined have probability values 
close to 0 (i.e., color blue in Fig. 3). We hypothesize that this may be due 
to the selection of the full region of interest as a source of training data, 
implying, as explained by Ploton and colleagues [55], that the model 
may be replicating the area of study, expecting that non-mined areas 
have a low probability of being mined. Thus, we consider that this may 
hinder the model’s capacity to predict future mining activities inside or 
outside the area of study. In contrast, when observing models S-D and 
S–C, we noted that these yield a more plausible footprint of the real data 
and are capable of predicting mining in zones outside or far away from 
the training area (see Fig. 6). 

Consequently, all the sampling strategies selected yield an overall 
mining footprint delimitation that encompasses real mining activity (see 
Fig. 1). However, static-oriented models S-D and S–C show a more refined 
and feasible representation of the real data when compared with S-A. 
Moreover, when observing the temporal-oriented model (i.e., T-C), it can 
be noted that the predicted footprint has a more precise delimitation, 
but it is less sensitive to identify new potentially mined areas. In 
contrast, static-oriented models S-D and S–C produce less precise foot-
prints but are capable of predicting mined areas outside and far away 

Fig. 5. Validation scores for testing datasets constructed following different sampling regions and strategies. * Indicates special testing dataset sampled from a region 
far away from HR. ACC, AUC, F1 and REC stand for accuracy, area under the curve, F1-score, and recall, respectively. 
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from the training zone, or that were not mined before. In this sense, we 
argue that it is more practical and useful to rely on static-oriented models 
to conduct our analysis and discussion since they deliver information 
more aligned with the exploratory nature of our study. Having said this, 
we consider that a temporal-oriented approach would be more suitable if 
the goal is to foresee with detail how the mining activity expands. 

Our results demonstrate that proximity to infrastructure is not al-
ways indicative of high mining probability. In fact, when analyzing the 
spatial distribution of model accuracy (i.e., correct/incorrect predictions 
per cluster), we observe that the model’s performance decreases in those 
clusters where accessibility and mining activity showed opposite trends 

(i.e., 11 and 12). For instance, model predictions in areas nearby and 
downstream the Malinowski river do not show important hotspots due 
to their contiguity to the Tambopata National Park, far from human 
settlements and infrastructure. However, in real life (i.e., 2017 - pre-
sent), areas like La Pampa and Malinowski have experienced aggressive 
mining activity. This fact demonstrates the existence of opposing trends 
in terms of dependency to accessibility, making mining a potential 
outlier as compared to other land uses (e.g., urban sprawl, logging, cattle 
ranching, aquaculture …) in the Amazon rainforest, which tend to be 
highly correlated to road proximity and accessibility [56,57]. Curie and 
colleagues [58] have related poverty of Amazonian communities with 
remoteness, identifying that forest products become a trigger to mitigate 
poverty in many remote areas. In this sense, it is plausible to assume that 
mining may also be a mechanism to boost income in remote commu-
nities in the region of interest. Consequently, we recommend future 
research to focus on the behavior of mining activities in inaccessible and 
remote areas and their relationship to socio-economic indicators in the 
local population. 

Considering that static and dynamic features were selected for the 
analysis, on the one hand, it has been shown that geographical condi-
tions can be associated with the occurrence of mining for particular 
regions. On the other hand, for some regions, the sudden appearance of 
mining does not match previous patterns and might suggest the presence 
of external factors that were not considered in this study. Nevertheless, 
the results lead us to state that ML techniques allow anticipating new 
mining areas, and can serve as a benchmark to estimate GHG emissions 
and other environmental impacts (e.g., toxicity) from the deforestation 
process [59]. A perfect match between past data and predictive values 
does not appear to be a plausible outcome. However, the current model 
provides insights of potential mined areas, based on our knowledge of 
the past. It is important to mention that we were not able to obtain a 
numeric metric that represented the consistency of the prediction of 
expansion mining areas. In this sense, we trained models to identify 
hotspots and we analyzed where the mining predictions were recurrent. 

Regarding the spatial distribution of the predicted pixels in the static- 
oriented models, neighboring mined pixels tended to have similar 
probability and it was not common to observe drastic changes among 
their values. This trend, however, was not always reflected in the real 
data where non-mined pixels could be found inside regions with high 
mining activity. Our interpretation is that it is logical that neighboring 
pixels should have the same probability of mining since they have 
similar geographical features. In this sense, we hypothesize that the 
presence of these non-mined pixels could be explained by features not 
identified in this study (e.g., miner behavior and/or perception on 
mining potential in a given piece of land) or may correspond to some 
randomness intrinsic to this anthropogenic activity. 

Beyond the geographical distribution of the predictions, including 
more explanatory features could aid in the interpretation of the predic-
tion and in understanding the causality of the phenomenon. For 
instance, ASGM activities are highly dependent on governance condi-
tions [5]. In fact, command and control actions, such as interdictions 
implemented by the Peruvian Government in the past, have been used as 
a recurrent strategy to enforce laws. This policy has shown scarce ben-
efits when solving the issues related to mining sprawling and has 
accelerated the propagation of this activity in unexpected areas, some 
within the area of study, although others may occur in other piedmont 
alluvial areas in other Peruvian regions [60]. This behavior has been 
observed in clusters 2 and 11 (see Fig. 1), sectors with history of 
enforcement activity which resulted in an expansion phenomenon. 
Other drivers that lead ASGM expansion are the learning process of 
informal miners, restrictions linked to technological factors of the sup-
ply chain (e.g., mercury imports or innovation through new technolo-
gies), socioeconomic parameters in the neighboring highlands, or even 
aspects related to safety and risk. However, these aspects are difficult to 
model as variables that can be added to the predictive process of ML 
applied herein, although they may induce variations or changes in 

Fig. 6. Maps of mining probability for static and temporal models using 
different sampling strategies. a: static FULL + stratified-from-clusters (S–A). b: 
static HR + stratified-only (S–D). c: static HR + stratified-from-clusters (S–C). d: 
temporal HR + stratified-from-clusters (T–C). Z1, Z2 and Z3 indicate prominent 
zones selected for inspection. 
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relationship trends between clusters. 
From a predictive perspective, miners can also be independent in-

dividuals that can take erratic and unpredictable decisions. Hence, 
accurately determining the location of future specific mining activities 
would require understanding miners’ motivations and decision criteria. 
Despite the lack of granularity in terms of social patterns, these are, in 
many cases, implicitly portrayed in the set of variables used to model 
mining expansion. However, we do not have the mechanisms to isolate 
social interactions from other effects. Thus, we do not have the certainty 
that these social patterns will be replicated in the future and, therefore, 
these may change in time as part of the nature of a complex system. With 
the data obtained, we hypothesize that these behaviors may be a driving 
factor that is observed in Zone 2 (see Fig. 6c), where the model was 
unable to predict the appearance of new mining activity. Based on our 
understanding, this particular cluster has experienced intense activity 
that is not fully reflected if we observe data from previous years. 

5. Conclusions 

Motivated by the aggressive deforestation in the Peruvian Amazon, 
specifically MDD, due to alluvial mining activities and the lack of 
computational tools to anticipate new alluvial gold mining areas, this 
study uses ML techniques to explore gold mining expansion, and to 
identify possible future hotspots of these activities. ML application to 
ASGM expansion shows that the most appropriate modelling approach 
to analyze this activity can only be successfully trained to recognize 
previous patterns. However, we argue that our model can identify areas 
of high probability, especially those surrounding the main cities (e.g., 
Puerto Maldonado) and nearby areas of the Madre de Dios river, aiding 

Fig. 7. Comparison of predictions of model static HR + stratified-from-clusters (S–C) and real mining activity for regions not considered during model training (i.e., 
zones Z1, Z4 and Z5). 

Fig. 8. Ratio of correct and incorrect predictions per cluster of a random 
sample of 4000 pixels. 
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in the anticipation of preventive and mitigation measures. Therefore, we 
consider that our work contribution is twofold. On the one hand, the 
model constructed and the results can be used to enhance decision 
making when implementing geo-spatial policies for planning strategies 
to address the problem of ASGM expansion in the Amazon. Derived 
environmental, social and economic policies, such as deforestation, 
climate change or human health would also benefit directly from these 
data. On the other hand, the selected computational framework is 
flexible and reproducible, allowing the methodological pipeline pro-
posed to adapt to alternative case studies in the Amazon (e.g., agricul-
tural or cattle ranching expansion), to replicate informal mining-related 
deforestation patterns in other areas of the world or to admit the in-
clusion of additional variables in the present case study, which could 
become particularly relevant when modelling future scenarios. Indeed, 
while the method is proposed for a local region in the Peruvian Amazon, 
we consider that the methodological framework we present is suffi-
ciently flexible to be applied to other areas of the world. 
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M. Silman, Deforestation and forest degradation due to gold mining in the Peruvian 
Amazon: a 34-year perspective, Rem. Sens. 10 (12) (2018) 1903. 

[7] R. Kahhat, E. Parodi, G. Larrea-Gallegos, C. Mesta, I. Vázquez-Rowe, 
Environmental impacts of the life cycle of Alluvial gold mining in the Peruvian 
Amazon rainforest, Sci. Total Environ. 662 (2019) 940–951. 

[8] J.R. Kuramoto, La Minería Artesanal e Informal en el Perú. Mining, Minerals and 
Sustainable Development (82), 53. Retrieved from, http://www.detrasdelacortina. 
com.pe/download/Miner%EDa artesanal e Informal en el Per%FA (1).pdf, 2001. 

[9] -B.J. Dammert, Financing infrastructure projects in the southern Amazon of Peru: 
its relation with environmental and social safeguards. https://www.bu.edu/gdp/ 
files/2018/10/GEGI_GDP-Peru-WP.pdf, 2018. 

[10] MAAP, MAAP #130: Illegal Gold Mining DOWN 78% in Peruvian Amazon but Still 
Threatens Key Areas, 2020, December 2, MAAP, 2020, https://maaproject.org/202 
0/gold-mining-peru/. 

[11] B. Fraser, Peruvian gold rush threatens health and the environment, Environ. Sci. 
Technol. 43 (2009) 7162–7164. 

[12] B. Fraser, Peru’s gold rush prompts public-health emergency, Nature 534 (2016) 
162. 

[13] J.J. Swenson, C.E. Carter, J.C. Domec, C.I. Delgado, Gold mining in the peruvian 
amazon: global prices, deforestation, and mercury imports, PLoS One 6 (4) (2011). 

[14] G.P. Asner, R. Tupayachi, Accelerated losses of protected forests from gold mining 
in the Peruvian Amazon, Environ. Res. Lett. 12 (9) (2017), 094004. 

[15] G.P. Asner, W. Llactayo, R. Tupayachi, E.R. Luna, Elevated rates of gold mining in 
the Amazon revealed through high-resolution monitoring, Proc. Natl. Acad. Sci. 
USA 110 (46) (2013) 18454–18459. 

[16] F.D.L. Lobo, M. Costa, E.M.L.D.M. Novo, K. Telmer, Distribution of artisanal and 
small-scale gold mining in the Tapajós River Basin (Brazilian Amazon) over the 
past 40 years and relationship with water siltation, Rem. Sens. 8 (7) (2016) 579. 

[17] N. Alvarez-Berríos, J. L’Roe, L. Naughton-Treves, Does formalizing artisanal gold 
mining mitigate environmental impacts? Deforestation evidence from the Peruvian 
Amazon, Environ. Res. Lett. 16 (6) (2021), 064052. 

[18] F. Donati, S.M. Dente, C. Li, X. Vilaysouk, A. Froemelt, R. Nishant, S. Hashimoto, 
The future of artificial intelligence in the context of industrial ecology, J. Ind. Ecol. 
26 (4) (2022) 1175–1181. 

[19] H. Arbabi, M. Lanau, X. Li, G. Meyers, M. Dai, M. Mayfield, D. Densley Tingley, 
A scalable data collection, characterization, and accounting framework for urban 
material stocks, J. Ind. Ecol. 26 (1) (2022) 58–71. 

[20] B. Alavi, M. Tavana, H. Mina, A dynamic decision support system for sustainable 
supplier selection in circular economy, Sustain. Prod. Consum. 27 (2021) 905–920. 

[21] A. Nabavi-Pelesaraei, S. Rafiee, S.S. Mohtasebi, H. Hosseinzadeh-Bandbafha, K. 
W. Chau, Integration of artificial intelligence methods and life cycle assessment to 
predict energy output and environmental impacts of paddy production, Sci. Total 
Environ. 631 (2018) 1279–1294. 

[22] H. Lee, J. Wang, B. Leblon, Using linear regression, random forests, and support 
vector machine with unmanned aerial vehicle multispectral images to predict 
canopy nitrogen weight in corn, Rem. Sens. 12 (13) (2020) 2071. 

[23] A. Froemelt, R. Buffat, S. Hellweg, Machine learning based modeling of 
households: a regionalized bottom-up approach to investigate consumption- 
induced environmental impacts, J. Ind. Ecol. 24 (3) (2020) 639–652. 

[24] H. Cai, M. Xu, Greenhouse gas implications of fleet electrification based on big 
data-informed individual travel patterns, Environmental science Science & 
technologyTechnology 47 (16) (2013) 9035–9043. 

[25] L. Breiman, Statistical modeling: the two cultures (with comments and a rejoinder 
by the author), Stat. Sci. 16 (3) (2001) 199–231. 

[26] H. Mayfield, C. Smith, M. Gallagher, L. Coad, M. Hockings, Using Machine 
Learning to Make the Most Out of Free Data: A Deforestation Case Study, 8th 
International Congress on Environmental Modelling and Software, Toulouse, 
France, 2016. July 2016. 

[27] M.A. Brovelli, Y. Sun, V. Yordanov, Monitoring forest change in the amazon using 
multi-temporal remote sensing data and machine learning classification on Google 
Earth Engine, ISPRS Int. J. Geo-Inf. 9 (10) (2020) 580. 

[28] G. Larrea-Gallegos, I. Vázquez-Rowe, Exploring machine learning techniques to 
predict deforestation to enhance the decision-making of road construction projects, 
J. Ind. Ecol. 26 (1) (2022) 225–239. 

[29] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, R. Moore, Google 
Earth engine: planetary-scale geospatial analysis for everyone, Remote Sens. 
Environ. 202 (2017) 18–27. 

[30] D. Cortés-McPherson, Expansion of small-scale gold mining in Madre de Dios: 
‘capital interests’ and the emergence of a new elite of entrepreneurs in the 
Peruvian Amazon, Extr. Ind. Soc. 6 (2) (2019) 382–389. 

[31] S.G. Perz, E.R. Mendoza, A. dos Santos Pimentel, Seeing the broader picture: 
stakeholder contributions to understanding infrastructure impacts of the 
Interoceanic Highway in the southwestern Amazon, World Dev. 159 (2022), 
106061. 

[32] D.M. Theobald, D. Harrison-Atlas, W.B. Monahan, C.M. Albano, Ecologically- 
relevant maps of landforms and physiographic diversity for climate adaptation 
planning, PLoS One 10 (12) (2015), e0143619. 

[33] T. Hengl, Clay content in % (kg/kg) at 6 standard depths (0, 10, 30, 60, 100 and 
200 cm) at 250 m resolution (Version v02), Zenodo (2018), 10.5281/zenodo.1 
476854. 

[34] T. Hengl, Sand content in % (kg/kg) at 6 standard depths (0, 10, 30, 60, 100 and 
200 cm) at 250 m resolution (Version v02), Zenodo (2018), 10.5281/zenodo.1 
476851. 

[35] MTC, Ministerio de Transportes y Comunicaciones, 2016, Información Espacial 
SINAC, 2016 (D.S. N◦ 011-2016-MTC), https://portal.mtc.gob.pe/transportes/cam 
inos/normas_carreteras/informacion_espacial.html. (Accessed 24 November 
2019). 

[36] MINAM, Ministerio del Ambiente, 2019, Sistema Nacional de Información 
Ambiental, 2019, https://sinia.minam.gob.pe/content/capas-geograficas. 
(Accessed 24 November 2019). 

[37] HDX, Hidrografía del Perú. Información hidrográfica del Perú. The humanitarian 
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