Industrial ecology for the oceans

Autor(es): Ian Vázquez-Rowe, Robert Parker, Helen Hamilton, Huan Liu

Human interaction with ocean resources has historically been challenging due to the difficulties that arise when a terrestrial species aims at becoming successful in a marine environment. Shipwrecks, for instance, have doomed coastal communities for centuries, and even today fishing is one of the deadliest sectors in the labor force. Similarly, human-induced marine environmental catastrophes, such as oil spills for instance (Trevors & Saier, 2010), have commonly been laborious to clean up due to the inherent difficulty of humans performing beyond terrestrial ecosystems.

Continued human population and economic growth since the beginning of the Industrial Revolution have exacerbated the need of human societies for mineral ores, fossil fuels, and other sources of energy, water, and food. This has led to the occupation of vast areas of terrestrial land, to the extent that humans now have a noticeable footprint in all the world's terrestrial biomes. In the world's oceans this same pattern has occurred at a slower pace throughout the decades, with fishing activities becoming more efficient with the arrival of steam vessels in the 1880s, diesel in the 20th century (Engelhard, 2008), and the incorporation of sophisticated detection systems turning ancestral coastal fishing activities into highly industrialized systems that land millions of metric tons of fish and other marine species annually (Fornshell & Tesei, 2013). Similarly, oil rigs spread quickly in the world's ocean to provide additional fossil fuel supplies for thirsty growing economies (Nyman, 2015), marine fright soared with the process of globalization (Mersin et al., 2019) with thousands of cargo vessels swarming the seas and, more recently, seabed mining has appeared in the public and private agenda as an alternative and lucrative sector to maintain the supply of metal ores in the technosphere (Levin et al., 2020).

This increased pressure of human activities on the ocean and its resources has translated into a series of environmental impacts that have affected marine conservation (Knowlton, 2021) and degraded vast areas of the ocean. However, it must be noted that not all environmental impacts affecting the ocean are located in the ocean itself, but rather are created by terrestrial activities. In this sense, nutrient loading linked to wastewater treatment plants, agriculture, and cattle ranching are responsible for vast dead zones generated in multiple coastal zones across the globe (Diaz & Rosenberg, 2008), and it is also mainly terrestrial activities that are responsible for the accumulation of plastic waste in the world's oceans (Beaumont et al., 2019).

Interestingly, many of these environmental impacts have only been analyzed in detail in recent years. For instance, marine plastic accumulation due to anthropogenic activities and its impacts on ecosystems and human health have only become a relevant field of research in the past decade after the Call for Action “Our Ocean, Our Future” of the Ocean Conference, organized by the United Nations in New York on June 5−9, 2017 (Sonnemann & Valdivia, 2017). In this context, although the focus of oceans-based research has traditionally been narrowly focused, researchers are recognizing the value of a wider, systems-based perspective with the aim of linking industrial uses with the environmental and resource impacts they engender. We argue that the field of industrial ecology is well-suited to fill that gap, as it is interdisciplinary in nature, rapidly growing, and has systems analysis at its core.

The current special issue of the Journal of Industrial Ecology, entitled “Industrial Ecology for the Oceans,” explores all of the above-mentioned issues with the ultimate objective of catalyzing and compiling novel research regarding the use of industrial ecology in the world's oceans. A total of 24 articles were accepted for publication in the current special issue. These can be divided into five main topics: (i) fishing and aquaculture; (ii) shipping; (iii) ocean acidification; (iv) marine plastics; (v) nutrient flows; and (vi) seabed mining, and are described below.

Descargar publicación (154,98 KB)
Compartir vía:
Enviar a: