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1 Introduction

Aquatic supply chains, based on e.g. fish, molluscs, crus-
taceans and algae, provide products aimed for direct or
indirect human consumption and other uses. Global de-
mand for these products is increasing, but the fact that
wild-capture fisheries—supplying inputs for the food and
feed industries—have stagnated (FAO 2016), or even de-
clined (Pauly and Zeller 2016), has raised questions about
the environmental consequences of aquatic supply chains
(Ziegler et al. 2016). Research applying LCA to seafood
products has emerged since the early years of the century
and, until today, dozens of case studies of fisheries and
aquaculture systems from all around the world have been
published. The body of literature in this field has grown to
the extent of allowing systematic reviews to be undertaken
on specific production sectors, such as for capture fisheries
(Vázquez-Rowe et al. 2012; Avadí and Fréon 2013) and
aquaculture (Henriksson et al. 2012).

The lifecycle of seafood commodities differs from that
of terrestrial production systems in their diversity, in the

case of fisheries, the reliance on extraction of a natural
resource (fish stocks), their impacts on often unmapped
ecosystems (e.g. seafloors and deep sea fish stocks) and
the more complex trophic webs of aquatic ecosystems. To
capture also these biotic and fisheries-specific impacts, an
increasing number of fisheries and aquaculture LCAs ap-
ply novel impact categories such as biotic resource use
and benthic ecosystems impacts. Aquaculture systems, in
addition, often rely on feed resources from capture fisher-
ies, agriculture and livestock, requiring extensive LCI
models.

Among the existing aquaculture seafood LCA studies,
there is a strong focus on salmonids aquaculture in Europe
and North America. The globally largest aquaculture sec-
tor, carp farming in China, has, however, been poorly cov-
ered. Peruvian anchoveta, the world’s largest fishery and
the primary source of fishmeal and fish oil, was first
modelled in 2014. Consequently, while the number of
aquatic LCAs has steadily been increasing, the uniqueness
of aquatic production chains and the diversity of species
leave many inventories overlooked and some relevant im-
pact categories unaddressed. In response, we initiated this
Special Issue (SI), to supplement literature and highlight
shortcomings. Thirteen articles were ultimately accepted in
the SI.

2 Thirteen contributions towards better
practices

As far as the editors were able to ascertain, this SI consti-
tutes the first attempt to cluster a series of papers linked to
seafood LCA. Eight of the accepted papers are linked to
aquaculture production and aquafeed, whereas three man-
uscripts delved into the environmental impacts of marine
fisheries. Two papers were not linked directly to the food
sector, but rather to non-food high-value products obtained
from marine fisheries.
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2.1 Aquaculture production and aquafeeds

Parker (2018) evaluates a vertically integrated salmon produc-
tion system in Tasmania, encompassing feed and seed produc-
tion, grow-out, processing and distribution. The impact of the
use of animal by-product inputs in aquaculture feeds was ex-
plored, thus contributing to the on-going efforts of reducing
aquaculture’s dependence on wild fisheries. Silva et al. (2018)
also compare the environmental performance of different
aquaculture feed ingredients originating from four sources:
fish processing by-products, Peruvian anchovy, poultry
by-products and soy. Newton and Little (2018) also focus on
salmonids, with an LCA of Scottish Atlantic salmon, mapping
the environmental impacts geographically. Primary data are
presented from six salmon farms in Scotland, as well as an
international feed mill and a major processor.

Aubin et al. (2018) analysed blue mussel (Mytilus edulis)
bouchot culture in the Mont-St Michel Bay in France. Their
study focuses on the ability of bivalves to Bextract nutrients
from the environment by filtering water and producing shell^
by analysing how these behaviours influence LCAmodelling.
In the assessment, the chemical composition of both mussel
flesh and shell were analysed to calculate potential positive
effects in two impact categories: climate change and eutrophi-
cation. Ray et al. (2018), on the contrary, suggest that bivalve
shells ultimately result in net emissions of carbon dioxide
(CO2) in the biogenic process of formation of calcium carbon-
ate, calcification. Their results suggest that actual GHG emis-
sions of bivalve systems could be considerably larger than
previously calculated.

A contribution by Abdou et al. (2018) sheds light on a less
studied species and geographical location, farmed seabass and
sea bream in Tunisia. A sample of 18 farms (out of 24 in the
country) was classified into coherent types by means of
Principal Component Analysis, and demonstrated a correla-
tion between rearing practices and environmental impacts,
identifying technical parameters to be improved towards re-
ducing impacts. Another study set in the Mediterranean is
Mendoza-Beltran et al. (2018) who mainly focus on method-
ological issues when comparing an integrated multi-trophic
aquaculture (IMTA) with conventional aquaculture produc-
tion of seabass, sea bream, and oysters. Their results point
towards slightly lower emissions in IMTA systems, but fea-
turing a strong influence from the type of allocation used.
Interestingly, the authors include allocation as a source of
uncertainty with the conclusion that Bmost uncertainty in the
results is probably due to inventory data dispersion^.

Last among the aquaculture-related studies, Järviö et al.
(2018) set out to present an improved estimate of the carbon
emissions from mangrove deforestation. The article revisits
several land use and land-use change (LULUC) publications
and identifies three driving processes for CO2 emissions from
mangrove deforestation: land-use change carbon losses,

continuing carbon losses (mainly through sediment loss),
and missed potential carbon sequestration.

2.2 Marine fisheries

Villanueva-Rey et al. (2018) analysed a small-scale coastal
driftnet (xeito) fishery for European pilchard (Sardina
pilchardus). The study shows how LCA could be used to
support more sustainable and holistic decision-making in fish-
eries policy. Also in Spain, Laso et al. (2018) evaluated the
European anchovy fishery in the Bay of Biscay per vessel and
per port, to identify any discrepancies in environmental im-
pacts among local fleets and evaluate Bthe skipper effect^.

Avadí et al. (2018) studied the fishery for Peruvian hake
(Merluccius gayi) caught by mid-water trawls. Different fleet
segments, based on holding capacity and engine power were
analysed. More complete data could serve as a basis for opti-
misation efforts that would benefit both the economic and
environmental performance of the fishery.

2.3 Non-food aquatic products

In a third group of papers, Barr and Landis (2018) and Muñoz
et al. (2018a, b) highlight the increasing use of marine re-
sources beyond food and feed. Barr and Landis (2018) use
LCA to compare the production of Omega-3 fatty acids
(n-3), high protein feed, and biofuel from Gulf Menhaden
and algae. Results point towards the importance of using
membrane filtration when algae are used as feedstock.
Muñoz et al. (2018a, b), in the meantime, used consequential
LCA modelling to evaluate the production of chitosan from
shells originating from Indian wild-caught shrimp or snow
crabs caught off Newfoundland (Canada). Results presented
suggest that the two chitosan supply chains have different
environmental profiles depending upon geographical location,
raw material used, and final application.

3 Conclusions

The thirteen contributions to this SI present inventory data on
many previously undescribed capture fisheries, farming sys-
tems, geographical regions, inventory flows, and supporting
processes. They also introduce methodological advances in
the form of statistical considerations, impact categories rele-
vant to aquatic resources, and spatial considerations.We there-
fore see this SI as a valuable contribution to the field of aquatic
LCA research.

Considerable effort has been put in the collection of sea-
food LCA inventory data over the last decade. The use of
these beyond individual case studies is unfortunately ham-
pered either because they are not published at all or not avail-
able in sufficient detail. Future efforts should therefore aim at



collecting data on a more diverse set of countries and systems,
and to report these in a suitable format. Recent initiatives, by
ecoinvent® to collect inventory data from Latin American
fisheries- and aquaculture-related production systems and
the initiative to develop a seafood LCI database linked to the
development of EU Product Environmental Footprinting are
steps in the right direction.

Biotic resource use was identified as the best-explored im-
pact category specific to seafood LCAs. Better data are, how-
ever, needed to support this and other impact categories rele-
vant to aquatic environments. In terms of methodological
choices, allocation remains the major rift. The use of contrast-
ing allocation strategies would therefore increase comparabil-
ity among results and allow for stronger conclusions (e.g. if
product A consistently presents lower impacts than product B
regardless of which allocation method is used). Adopting
quantitative uncertainty approaches in LCI data, characterisa-
tion factors, and/or methodological choices (e.g. allocation)
would add additional statistical confidence to support conclu-
sions (Henriksson et al. 2015). Important to highlight here is
that impact assessment results from different studies are large-
ly incomparable, given different assumptions and methodo-
logical choices. It is more feasible to compare critical inven-
tory items such as fuel, water and chemicals use for individual
processes (e.g. fishing or grow-out), which can be contrasted
per functional unit.
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